Mitogen-activated protein kinases and retinal ischemia.

نویسندگان

  • Steven Roth
  • Afzhal R Shaikh
  • Meghann M Hennelly
  • Qing Li
  • Vytas Bindokas
  • Christine E Graham
چکیده

PURPOSE Mitogen-activated protein kinases (MAPKs), consisting of three major enzymes-extracellular signal-regulated kinase (ERK), p38, and c-jun N-terminal kinase (JNK)-couple cell-surface receptors to critical regulatory targets and gene transcription. We hypothesized that MAPKs are differentially expressed and have distinct functions after retinal ischemia. METHODS Rats were subjected to retinal ischemia by elevation of intraocular pressure. Changes in MAPK expression were examined by Western blot of whole retinal homogenates and by immunohistochemistry of retinal cryosections. Phosphorylated (activated) ERK, p38, and JNK proteins were localized by fluorescent double labeling. The functional significance of activated MAPKs was assessed using pharmacological antagonists. Specific MAPK blockade was documented by kinase assay and immunohistochemistry for phosphorylated target proteins. The outcome after ischemia was examined with electroretinography (ERG), by measuring retinal cell layer thickness in paraffin-embedded sections, and by TUNEL staining on retinal cryosections. Data were analyzed using ANOVA and post hoc t-test, with P < 0.05 considered significant. RESULTS Expression of phosphorylated JNK and p38 increased significantly after ischemia and followed a specific time course, beginning at 1 hour, and persisting up to 1 week later. JNK and p38 were expressed in the nuclei of ganglion and amacrine cells, the outer plexiform layer, the nerve fiber layer, and the axonal terminals of bipolar cells. Phosphorylated ERK was expressed in Müller cells, peaking at 1 to 6 hours after ischemia. Blocking activation of p38 or ERK significantly improved recovery of the ERG b-wave after ischemia, dramatically decreased thinning of the inner nuclear layers, and decreased the percentage of TUNEL-positive cells. CONCLUSIONS The MAPKs each demonstrate a specific cellular distribution after ischemia, and ERK and p38 are linked to apoptosis. Blockade of p38 or ERK provides significant protection from ischemic damage, suggesting a novel therapeutic role for MAPK inhibition in neuroprotection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

PURPOSE The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. METHODS Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham-...

متن کامل

Neuroprotective effect of geranylgeranylacetone against ischemia-induced retinal injury.

PURPOSE This study was conducted to assess the effects of geranylgeranylacetone (GGA) on ischemia-induced retinal injury. METHODS Adult C57BL/6J mice were given oral treatments of GGA at 200 mg/kg daily for seven days. Ischemic retinal injury was carried out, and the extent of retinal cell death was quantitatively examined after 7 days. Immunohistochemistry for single-stranded DNA, phosphoryl...

متن کامل

Mesoporous silica SBA-15 decreases hyperammonemia and affects the gene expression of mitogen-activated protein kinases in the prefrontal cortex of rats with bile duct ligation

Objective(s): We aim to examine possible ammonia lowering effects of mesoporous silica SBA-15 in rats after the common bile duct ligation (BDL). We also evaluate the effect of SBA-15 treatments during 28 days of BDL on locomotion and rearing behavior, as well as on the gene expression of Jnk3 and p38alpha (p38α) mitogen-activated protein kinases in the prefrontal corte...

متن کامل

Ischemic preconditioning attenuates apoptotic cell death in the rat retina.

PURPOSE Ischemic preconditioning (IPC) protects the rat retina against the injury that ordinarily follows prolonged ischemia. It has been shown that release of adenosine, de novo protein synthesis, and mediators, such as protein kinase C and K(ATP) channels, is required for IPC protection. However, the molecular mechanisms of neuroprotection by IPC are unknown. Retinal cells die after ischemia ...

متن کامل

Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury

PURPOSE Retinal ischemia/reperfusion (I/R) injury plays an important role in the pathophysiology of various ocular diseases. Retinal ganglion cells (RGCs) are particularly vulnerable to ischemia. Hydrogen sulfide (H(2)S) was recently shown to be neuroprotective in the brain and retina due to its antiapoptotic effects. Rapid preconditioning of retinal neurons by inhaled H(2)S before I/R injury m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 44 12  شماره 

صفحات  -

تاریخ انتشار 2003